In the 1950s and ‘60s, Popular Electronics and other magazines carried ads for strange looking machines called Geniacs and Brainiacs. The ads claimed they were “electric brains” that could play Tic-Tac-Toe and NIM. A while ago, I bought several sets on eBay and I would like to share my experiences of learning about them and my sometimes frustrating — but successful — efforts to get them to work.
Life would not be the same without the transistor, which was invented just over seven decades ago. It is considered by researchers and historians to be the most important invention of the 20th century, leading to groundbreaking advances in computing, communications, medicine, and practically every technically related field. In this article, we’ll examine the contributions of the personalities and organizations involved, as well as the impetus that led to this landmark invention.
It was 1923, and radio was the phenomenon of the day. Over 600 broadcast stations were on the air, and Americans bought 100,000 receivers that year. (Sales would jump to 1,500,000 in 1924.) Many owners hosted “radio parties” and danced to the latest jazz music with their friends. At the same time, the game of Bridge was sweeping the country. Read how one card company used this “new technology” to promote their products.
When the concept of electromagnetic waves was first proposed around 1864, it was met with great skepticism. As a result, the idea languished for a long time. It took several decades for a handful of dedicated persons — infatuated with the mysteries of electricity and magnetism — to finally put the theory on a solid footing.
This November, in Versailles, France, representatives from 57 countries are expected to make history. They will vote to dramatically transform the international system that underpins global science and trade. This single action will finally realize scientists’ 150 year dream of a measurement system based entirely on fundamental properties of nature. The International System of Units — informally known as the metric system — will change in a way that is more profound than anything since its establishment following the French Revolution.
Sometimes I wonder which of my portable digital voltmeters I can trust — the B&K, Fluke, or Amprobe. Usually, they’re pretty close but it bugs me not knowing whether they are right on the nose. Fortunately, these days, there are a number of very accurate voltage reference circuits that you can build or purchase for a few dollars.
Over the years, I have accumulated a bunch of chips from before the era of true PCs when computers with names like Altair, KIM-1, and Cosmac ELF were popular. I’ve been looking for a way to use them in new projects, so I designed a system around a 40-pin PIC16F887. I figured this would put some of my historic chips to work and be a great learning tool for understanding how a microcomputer works.