There’s a cost, of course, for digging deeper. You have to invest the time to read about various oscillator circuits including the tradeof fs of each design, perhaps historical uses of the circuit, and perhaps applications beyond that of a siren. The payof f for going beyond the surface descriptions of circuits on a regular basis is the ability to intuit circuits. It’s a skill that I’d say is possessed by less than 1% of hobbyists.
Developing a deeper understanding of electronics often means looking into other systems. For instance, if you gain an understanding of a mechanical oscillator, many of the principles will transfer to an electronic version. Consider that mechanical damping has direct parallels with electric dampers, for example. In this regard, digging deeper of ten involves studying the history of engineering.
My favorite historical topics are watches, clocks, and robotics — all of which predate electronics by over a century. By searching the Web — including the US Patent and Trademark Of fice site — I’ve found mechanical analogs for everything from batteries (springs) and voltage regulators (mechanical regulators) to ergonomic user inter faces (watch faces and winding stems). In some cases, I find myself wondering why per fectly good mechanical designs were replaced by inferior electronic circuits. I also wonder if there is anyone alive today capable of recreating the mechanical systems of a century ago. Of course, if you’re not comfor table with self-directed learning, there are schools of engineering that can give you a formal education in electronics. Whether or not that translates to the ability to intuit electronic circuits depends on the school and how you leverage your experience. That said, I’ve found hands-on experience the best teacher regardless of the learning environment. You have to get your hands dirty to truly understand electronics. So, get that soldering iron ready. NV